skip to main content


Search for: All records

Creators/Authors contains: "Wittemyer, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Individual animals should adjust diets according to food availability. We used DNA metabarcoding to construct individual-level dietary timeseries for elephants from two family groups in Kenya varying in habitat use, social position and reproductive status. We detected at least 367 dietary plant taxa, with up to 137 unique plant sequences in one fecal sample. Results matched well-established trends: elephants tended to eat more grass when it rained and other plants when dry. Nested within these switches from ‘grazing’ to ‘browsing’ strategies, dietary DNA revealed seasonal shifts in food richness, composition and overlap between individuals. Elephants of both families converged on relatively cohesive diets in dry seasons but varied in their maintenance of cohesion during wet seasons. Dietary cohesion throughout the timeseries of the subdominant ‘Artists’ family was stronger and more consistently positive compared to the dominant ‘Royals’ family. The greater degree of individuality within the dominant family's timeseries could reflect more divergent nutritional requirements associated with calf dependency and/or priority access to preferred habitats. Whereas theory predicts that individuals should specialize on different foods under resource scarcity, our data suggest family bonds may promote cohesion and foster the emergence of diverse feeding cultures reflecting links between social behaviour and nutrition. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Fuller, Andrea (Ed.)
    Orphans of several species suffer social and physiological consequences such as receiving more aggression from conspecifics and lower survival. One physiological consequence of orphaning, stunted growth, has been identified in both humans and chimpanzees, but has not been assessed in a non-primate species. Here, we tested whether wild African elephant orphans show evidence of stunted growth. We measured individually known female elephants in the Samburu and Buffalo Springs National Reserves of Kenya, with a rangefinder capable of calculating height, to estimate a von Bertalanffy growth curve for female elephants of the study population. We then compared measurements of known orphans and non-orphans of various ages, using a Bayesian analysis to assess variation around the derived growth curve. We found that orphans are shorter for their age than non-orphans. However, results suggest orphans may partially compensate for stunting through later growth, as orphans who had spent a longer time without their mother had heights more similar to non-orphans. More age mates in an individual’s family were associated with taller height, suggesting social support from peers may contribute to increased growth. Conversely, more adult females in an individual’s family were associated with shorter height, suggesting within-group competition for resources with older individuals may reduce juvenile growth. Finally, we found a counterintuitive result that less rainfall in the first 6 years of life was correlated with taller height, potentially reflecting the unavoidable bias of measuring individuals who were fit enough to survive conditions of low rainfall as young calves. Reduced growth of individuals has been shown to reduce survival and reproduction in other species. As such, stunting in wildlife orphans may negatively affect fitness and represents an indirect effect of ivory poaching on African elephants. 
    more » « less
  3. Rescue, rehabilitation, and release (‘rescue-rehab-release’) of wildlife is an increasingly widespread practice across ecosystems, largely driven by habitat loss, wildlife exploitation and a changing climate. Despite this, its conservation value has not been realized, in part due to the scarcity of what has been termed “the 4th R”, research. Similar to conservation breeding and headstarting, rescue and rehabilitation entails close association of humans and the wildlife in their care over impressionable and extended periods. However, unlike these interventions, rescue and rehabilitation require an initial, and sometimes sustained, focus on crisis management and veterinary needs which can impede the development of natural behaviors and promote habituation to humans, both of which can compromise post-release survival and recruitment. In this perspective, we discuss the pathways toward, and implications of, behavioral incompetence and highlight opportunities for testable interventions to curtail negative outcomes post-release, without compromising the health or welfare of rescued individuals. We propose that practitioners ‘switch gears’ from triage to fostering behavioral competence as early in the rehabilitation process as is possible, and that research be implemented in order to develop an evidence-base for best practices that can be shared amongst practitioners. We focus on four mammalian species to illustrate specific contexts and considerations for fostering behavioral competence by building on research in the conservation translocation literature. Finally, we discuss a way forward that calls for greater cross-pollination among translocation scenarios involving extended time under human care during developmentally sensitive periods. 
    more » « less
  4. Abstract

    Some animal species are responding to climate change by altering the timing of events like mating and migration. Such behavioral plasticity can be adaptive, but it is not always. Polar bears (Ursus maritimus) from the southern Beaufort Sea subpopulation have mostly remained on ice year‐round, but as the climate warms and summer sea ice declines, a growing proportion of the subpopulation is summering ashore. The triggers of this novel behavior are not well understood. Our study uses a parametric time‐to‐event model to test whether biological and/or time‐varying environmental variables thought to influence polar bear movement and habitat selection also drive decisions to swim ashore. We quantified the time polar bears spent occupying offshore sea ice of varying ice concentrations. We evaluated variations in the ordinal date bears moved to land with respect to local environmental conditions such as sea ice concentration and wind across 10 years (2005–2015). Results from our study suggest that storm events (i.e., sustained high wind speeds) may force polar bears from severely degraded ice habitat and catalyze seasonal movements to land. Unlike polar bears long adapted to complete summer ice melt, southern Beaufort Sea bears that summer ashore appear more tolerant of poor‐quality sea ice habitat and are less willing to abandon it. Our findings provide a window into emergent, climatically mediated behavior in an Arctic marine mammal vulnerable to rapid habitat decline.

     
    more » « less
  5. Abstract

    Habitat conversion to farmland has increased human‐wildlife interactions, which often lead to conflict, injury or death for people and animals. Understanding the behavioural and landscape drivers of human‐wildlife conflict is critical for managing wildlife populations. Staging behaviour prior to crop incursions has been described across multiple taxa and offers potential utility in managing conflict, but few quantitative assessments of staging have been undertaken. Animal movement data can provide valuable, fine‐scale information on such behaviour with opportunities for application to real‐time management for conflict prediction.

    We developed an approach to assess the efficacy of six widely used metrics of animal movement to identify staging behaviour prior to agricultural incursions. We applied this approach to GPS data from 55 African elephants in the Serengeti‐Mara ecosystem and found tortuosity and HMM‐derived behavioural states to be the most effective for identifying staging events. We then assessed temporal patterns of defined staging at daily and seasonal scales and explored environmental and anthropogenic drivers of staging from spatial generalized logistic mixed models. Finally, we tested the viability of combining movement and simple spatial metrics to predict crop incursions based on GPS data.

    Our approach identified staging behaviour that appeared to be driven largely by human activity and diurnal availability of protective cover from forest, riverine vegetation, and topography. Staging also varied substantially by season. Tortuosity and behavioural state metrics identified different staging strategies with distinct spatial distributions and anthropogenic drivers, and appeared to be linked to the juxtaposition between protected and cultivated lands. Tortuosity‐based staging combined with distance‐to‐agriculture produced promising results for pre‐event prediction of crop incursion.

    Synthesis and applications. Our study found staging by elephants prior to crop use could be identified from GPS tracking data, indicating that a better understanding of movement behaviour can inform targeted and proactive human‐wildlife conflict management and inform spatial planning efforts. Our approach is extendable to other conflict‐prone species to assess pre‐conflict behaviours and space use and demonstrates some of the challenges and advantages of using animal behaviour to assess temporal and spatial heterogeneity in human‐wildlife conflict.

     
    more » « less
  6. null (Ed.)
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. 
    more » « less
  7. COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.

     
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  8. Abstract

    To conserve wide‐ranging species in human‐modified landscapes, it is essential to understand how animals selectively use or avoid cultivated areas. Use of agriculture leads to human–wildlife conflict, but evidence suggests that individuals may differ in their tendency to be involved in conflict. This is particularly relevant to wild elephant populations.

    We analysed GPS data of 66 free‐ranging elephants in the Serengeti‐Mara ecosystem to quantify their use of agriculture. We then examined factors influencing the level of agricultural use, individual change in use across years and differences in activity budgets associated with use. Using clustering methods, our data grouped into four agricultural use tactics: rare (<0.6% time in agriculture; 26% of population), sporadic (0.6%–3.8%; 34%), seasonal (3.9%–12.8%; 31%) and habitual (>12.8%; 9%).

    Sporadic and seasonal individuals represented two‐thirds (67%) of recorded GPS fixes in agriculture, compared to 32% from habitual individuals. Increased agricultural use was associated with higher daily distance travelled and larger home range size, but not with age or sex. Individual tactic change was prevalent and the habitual tactic was maintained in consecutive years by only five elephants. Across tactics, individuals switched from diurnal to nocturnal activity during agricultural use, interpreted as representing similar risk perception of cultivated areas. Conversely, tactic choice appeared to be associated with differences in risk tolerance between individuals.

    Together, our results suggest that elephants are balancing the costs and benefits of crop usage at both fine (e.g. crop raid events) and long (e.g. yearly tactic change) temporal scales. The high proportion of sporadic and seasonal tactics also highlights the importance of mitigation strategies that address conflict arising from many animals, rather than targeted management of habitual crop raiders.

    Our approach can be applied to other species and systems to characterize individual variation in human resource use and inform mitigations for human–wildlife coexistence.

     
    more » « less
  9. null (Ed.)